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Abstract 

Background: SARS-CoV-2 antigen-detection rapid diagnostic tests (Ag-RDT) offer the ability to diagnose 

COVID-19 rapidly and at low cost; however, lower sensitivity than nucleic acid amplification tests (NAAT) 

has limited adoption of Ag-RDT in clinical settings.  

Methods: We compared Ag-RDT, NAAT, and clinical judgment alone for diagnosing COVID-19 among 

symptomatic patients. We considered two scenarios: a high-prevalence hospital setting with 24-hour 

NAAT turnaround, and a lower-prevalence outpatient setting with 3-day NAAT turnaround. We 

simulated transmission from cases and contacts and relationships between time, viral burden, 

transmission, and case detection. We used decision curve analysis to compare the net benefit of 

diagnostic approaches relying on Ag-RDT versus NAAT.   

Results: Greater net benefit was achieved with Ag-RDT than NAAT in the outpatient setting, as long as 

NAAT turnaround time was longer than one day. NAAT was predicted to offer greater net benefit than 

Ag-RDT in the hospital setting, unless NAAT turnaround times exceeded 2 days. Findings were robust to 

data-consistent variation in Ag-RDT performance, empiric isolation practices, duration of symptoms, and 

other model parameters. Both tests provided greater benefit than management based on clinical 

judgment alone, unless the available interventions carried minimal harm and could be provided at full 

intensity to all patients in whom COVID-19 diagnosis was considered. 

Conclusions: Ag-RDT may provide greater net benefit than NAAT for diagnosis of symptomatic COVID-19 

in outpatient settings when NAAT turnaround times are longer than one day. NAAT is likely the optimal 

testing strategy for hospitalized patients, especially those with prolonged symptoms prior to admission.  

Keywords: SARS-CoV-2, Diagnostic Tests, Symptomatic outpatients, Hospitals, Rapid antigen tests, 

Simulation, Decision curve analysis 

Introduction 

Accurate diagnosis of COVID-19 can guide clinical management; reduce transmission; and inform 

appropriate allocation of resources for isolation, contact tracing, and treatment. In many settings – 

including low- and middle-income countries (LMICs) as well as high-income countries with large 

outbreaks – efforts to diagnose COVID-19 using nucleic acid amplification tests (NAATs) frequently 

exceed capacity.
1–3
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Antigen-detection rapid diagnostic tests (Ag-RDTs) are less expensive than NAATs and can be performed 

in minutes without centralized laboratory infrastructure. Thus, they could facilitate higher volumes of 

testing and provide rapid results while relieving strains on laboratory capacity. Ag-RDTs are, however, 

less sensitive than NAATs. Some experts have argued that all SARS-CoV-2 testing must be highly 

sensitive, 
4,5

 while others advocate less sensitive testing primarily for community-level surveillance.
6
 

Recognizing the limited capacity for NAAT in many settings, WHO and national public health agencies 

have issued target product profiles for Ag-RDTs
7
 and interim guidance for their use in select 

circumstances.
8–10

 Meanwhile, a global partnership has begun to manufacture and distribute 120 million 

Ag-RDTs in LMICs.
11

  

As Ag-RDTs become more broadly available, it is important to understand the conditions under which 

implementing Ag-RDTs would be preferable to relying on NAAT and/or clinician judgment alone. This 

understanding must balance accuracy (i.e., sensitivity and specificity) with other considerations such as 

turnaround time and the likely response to a positive (or negative) diagnosis. We sought to aid decision-

making by quantifying these tradeoffs for patients presenting with symptomatic COVID-19 in the 

inpatient and outpatient settings.  
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Methods 

Overview 

We developed a simulation model of COVID-19 diagnostic evaluation in which we compared the use of 

point-of-care Ag-RDT, centralized (e.g., hospital-based) NAAT, and clinical judgment (i.e., without 

virological testing) among individuals presenting with symptoms suggestive of COVID-19. We 

parameterized the model using published data (and assumptions, where published data did not exist) 

regarding SARS-CoV-2 viral dynamics, clinical features of COVID-19, and diagnostic assay performance. 

The model accounts for the following aspects of disease dynamics and diagnostic testing (Figure 1): (1) 

time- dependent transmission from index cases and their contacts (Figure 1A); (2) variable timing of 

clinical presentation; (3) non-uniform distribution of peak viral burden across the population (Figure 1B); 

(4) correlation of viral burden with both assay sensitivity (Figure 1B, dotted horizontal lines) and 

infectivity (eAppendix Figure A1); and (5) assay-dependent decline in sensitivity with time since 

symptom onset (Figure 1C).  

 

Simulated patient populations and testing strategies 

We separately simulated two symptomatic patient populations: patients with moderate-to-severe 

illness in a hospital setting (of whom 40% were assumed to have COVID-19), and mildly symptomatic 

people in an outpatient setting (assuming that 10% have COVID-19
12

). Other differences between the 

two settings included a longer turnaround time for NAAT in the outpatient setting (1 day in the hospital, 

3 days for outpatients
13,14

), a greater amount of presumptive isolation while awaiting a diagnostic result 

in the hospital setting, a longer duration of symptoms before presentation in the hospital setting,  and a 

greater value placed on clinical improvement in the hospital setting versus reduction of transmission in 

the outpatient setting; details in eAppendix. These features were all evaluated in sensitivity analyses. 

We also modeled several differences between NAAT and Ag-RDT, based on available data from 

published studies and preprints. Ag-RDT was assumed to have lower initial sensitivity (85% relative to 

NAAT at illness onset, Figure 2B and eAppendix Table A1) but faster turnaround time (3 hours, versus 1 

to 3 days for NAAT). The modeled decline in assay sensitivity with time since symptom onset was also 

faster for Ag-RDT than for NAAT (Figure 1C).  
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In addition to comparing Ag-RDT to NAAT, we compared both virological assays to two clinical (i.e., non-

virological) diagnostic approaches: a “treat all” approach that provides the available interventions (such 

as isolation, treatment, or contact notification and quarantine) to all patients for whom COVID-19 

diagnoses were considered, or a “clinician judgment” approach with intervention for those patients 

whom clinicians deemed most likely to have COVID-19. Clinician judgment was estimated to have 80% 

sensitivity (comparable, at the time of clinical presentation, to the proportion of patients detectable by 

NAAT), with corresponding 50% specificity
15

 (compared to 99.5% and 99%, respectively, for NAAT and 

Ag-RDT, eAppendix Table A1).  Due to the absence of virological confirmation, we assumed that clinical 

diagnoses may result in less intense intervention – for example, less stringent isolation, less case 

reporting or contact notification, or more circumspect clinical management – and therefore reduced 

benefit or harm of intervention (by 25% in the primary analysis), compared to virological diagnoses 

made using Ag-RDT or NAAT.  

For directness of comparison, we assumed that only a single diagnostic approach would be used in a 

given setting and patient population, with no further testing or clinical risk stratification after the initial 

evaluation.  

 

Simulated SARS-CoV-2 transmission dynamics and diagnosis  

Our model stochastically simulated the timing of transmission events from index cases and their 

contacts, relative to the index cases’ symptom onset (Figure 1a; details in eAppendix). The model 

accounted for pre-symptomatic transmission,
16–18

  delays between symptom onset and clinical 

presentation,
19–21

 partial isolation while awaiting test results, and more stringent (but imperfect) 

isolation and contact tracing/quarantine once a COVID-19 diagnosis was made.
22,23

  

We assumed that peak upper-airway viral burden coincided with the onset of symptoms and was log-

normally distributed in the population (Figure 1b),
24,25

 and that both diagnostic sensitivity and infectivity 

were functions of this viral burden. Specifically, based on observed relationships between NAAT cycle 

threshold, viral culture, and infectivity,
19,26–28

 and similar to other models,
6
 we assumed a log-linear 

relationship between peak viral burden and peak infectivity, above a minimum threshold of 10
3
 viral 

genome copies. We also assumed that for both Ag-RDT and NAAT, the patients whose SARS-CoV-2 

infections were detected had higher viral burdens than those not detected by the same assay on the 

same day of illness (Figure 1b). Thus, since viral burden was correlated with infectivity, cases who could 
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be diagnosed only by a highly sensitive assay (NAAT) were less infectious, on average, that those who 

could be diagnosed by a less sensitive assay (Ag-RDT) (eAppendix Figure A1). We also assumed that 

assay sensitivity declined over time after an initial six-day period of maximal sensitivity; Ag-RDT 

sensitivity declined on a similar timeline as infectivity, while NAAT sensitivity declined more slowly and 

thus detected some patients who were no longer infectious (Figure 1c; details in eAppendix).
19,29,30

 

Using these assumptions, we simulated a population of 1,000,000 “index” patients, with COVID-19 each 

with a specified peak viral burden and time to clinical presentation. Our model included transmission 

events from index patients to their contacts (distributed according to index patients’ relative viral 

burden and thus infectivity) and transmission events from those contacts (assuming no correlation 

between infectivity of index patients and their contacts). We simulated the result of each diagnostic test 

based on the patient’s peak viral burden, the time (from symptom onset) that the test was performed, 

and the assay’s sensitivity at that point in time (Figure 1C). Based on these simulated diagnostic results 

and the corresponding intensity of interventions (e.g., isolation before the test, while awaiting test 

results, and after results returned) that determined the probability that intervention prevented 

transmission events, we then simulated which transmission events would be averted under each 

diagnostic strategy.  

In addition to averted transmission, we also modeled the clinical impact of interventions as being time-

sensitive. Specifically, we assumed that avertible COVID-19 morbidity and mortality in the index patient 

declined exponentially with time since symptom onset, with a small magnitude and short half-life of 3.5 

days in the outpatient setting (reflecting a short window of opportunity for antiviral therapy to avert 

hospitalization
31

) and a greater magnitude (based on increased average severity of disease) and slightly 

longer half-life in the hospital setting (details in eAppendix).  

 

Decision curve analysis and net benefit estimation 

We compared the value of different diagnostic strategies using an approach rooted in decision curve 

analysis (DCA), a method commonly used to weigh risks of over- and under-treatment.
32–34

 DCA 

combines the benefits of true-positive diagnoses and the harms of false-positive diagnoses on a single 

scale of “net benefit,” accounting for the prevalence of disease and the strength of preference for a 

true-positive versus false-positive diagnosis. We modified this approach to account for the importance 

of making diagnoses not only accurately, but also rapidly, among individuals with the highest 
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transmission potential, and with a robust response (e.g., directed clinical therapy, stringent isolation, 

and contact notification/quarantine). We then used net benefit analysis to estimate, and compare on a 

single scale, the value added by different diagnostic strategies, accounting for both transmission-related 

and clinical benefit achieved through a given strategy and the harm incurred from intervening on 

patients without COVID-19.
32

  

To accomplish this, we represented the net benefit of true-positive diagnoses as a sum of the reduction 

in transmission (stochastically simulated across the population) and the clinical benefit (decaying 

exponentially with time since clinical presentation, as described above).  

We thus calculated the net benefit of diagnosis with assay or clinical diagnostic approach j as  
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where p is the prevalence of COVID-19 among the patients evaluated; g1 is the relative value of 

preventing first-generation versus downstream transmission (eAppendix Table A1); T1j and T2j are the 

proportion of transmission events from index cases and immediate contacts, respectively, that are 

prevented by approach j after accounting for both sensitivity and infectivity in the simulation of 

1,000,000 patients described above; c is the expected clinical benefit of clinical intervention at symptom 

onset, compared to the benefit of preventing all transmission from the same cases; xij indicates whether 

case i is detected by approach j; d is the rate at which potential clinical benefit is lost as time passes; tij is 

the time from symptom onset to detection with approach j; spj is the specificity of assay/approach j; 
�

���
 

is the harm of intervening on a false positive, relative to the benefit of preventing all transmission and 

avertible morbidity and mortality from one true case; and lj is the reduction in intervention stringency 

associated with a given diagnostic method (i.e., lj ≤ 1 when j is non-virological diagnosis).  

We present results as decision curves, which plot the net benefit of each diagnostic approach across a 

range of values of the “threshold probability” q. This threshold probability represents the diagnostic 

certitude (i.e., probability of a patient having COVID-19) at which intervening at the onset of illness and 

not intervening would have equal expected benefit.
34

  For one-way and two-way sensitivity analyses of 

other parameters, we hold q fixed at a value reflecting the willingness in current practice to isolate or 

quarantine individuals with specified probabilities of having or developing COVID-19.  
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Parameter estimates are described in eAppendix Table A1. All analyses were performed using R version 

4.0.2.  

 

Results 

Transmission-related benefits of diagnosis 

The simulated number and timing of transmission events, under each diagnostic scenario, are shown for 

the outpatient setting in Figure 2. Specifically, 62% of COVID-19 cases were detected under the Ag-RDT 

scenario, compared to 80% for both NAAT and clinical judgment (Figure 2A). However, since Ag-RDT 

detected cases more rapidly than NAAT (Figure 2A) and also detected the most infectious cases 

(responsible for 77% of future transmission), Ag-RDT was projected to avert more transmission than 

either NAAT or clinical judgment (Figure 2B). For example, in the primary analysis, Ag-RDT-based 

diagnosis was estimated to avert 31% of transmission from outpatients with COVID-19 (assigning 1:4 

weight to immediate versus downstream transmission; eAppendix), versus 28% for NAAT and 20% for 

non-virological (clinical) diagnosis alone. By contrast, in the hospital setting – where NAAT turnaround 

time is shorter and isolation while awaiting test results was assumed to be stringent – NAAT prevented a 

greater proportion of transmission (34%) than Ag-RDT (30%) (Figure 2D).  

 

Net benefit and decision curves  

In the outpatient setting, Ag-RDT provide greater estimated net benefit than NAAT, considering not only 

reductions in transmission but also clinical benefits and harms of false-positive diagnosis (Figure 3A). 

This was true for all threshold probabilities below 50% (i.e., if the harm of missing a COVID-19 case is 

deemed greater than the harm of making a false-positive diagnosis). NAAT was estimated to provide 

greater net benefit than Ag-RDT if NAAT turnaround time was reduced to 1 day (Figure 3A). The net 

benefit of Ag-RDT relative to NAAT was lower when delays in diagnosis were less clinically 

consequential, Ag-RDT turnaround time was long, or adherence to isolation was high while awaiting a 

test result or low after a positive result (eAppendix, Figure A6) – but Ag-RDT still offered greater net 

benefit than NAAT in each of these scenarios. NAAT could also outperform Ag-RDT on the basis of its 

superior specificity, in situations where the harm of a false-positive diagnosis was deemed to be 

substantially greater than the harm of a missed COVID-19 diagnosis (high threshold probabilities in 
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Figure 3A). This might occur, for example, with high-risk patients who would be placed into congregate 

isolation facilities if they tested positive.   

In the hospital setting, by contrast, NAAT offered greater net benefit than Ag-RDT under the 

assumptions of our primary model. In sensitivity analyses, Ag-RDT was estimated to offer greater net 

benefit at most threshold probabilities if NAAT turnaround time increased to 2 days (Figure 3B), and the 

benefit of Ag-RDT approached that of NAAT if clinical interventions available after COVID-19 diagnosis 

were highly time-sensitive. 

Clinical diagnostic approaches provided greater net benefit than virological (Ag-RDT or NAAT) testing 

only if the relative harm of false-positive diagnoses was deemed to be very low (e.g., threshold of <3% in 

the outpatient setting or <7% in the hospital setting, Figure 4). In comparison, we estimated the 

empirical threshold probability for COVID-19 diagnosis in many settings to be 10% or higher 

(eAppendix). Assuming that people diagnosed clinically receive the same benefits (e.g., stringent 

isolation, antiviral therapy) as people diagnosed virologically may also overestimate the benefit of non-

virological diagnosis, especially at low threshold probabilities when some diagnoses are made for people 

with low probability of having COVID-19. When we considered the possibility that this low diagnostic 

certainty could result in less intensive intervention (reducing the benefit of each true-positive diagnosis 

by 25% when made clinically, solid green and black lines in Figure 4B and 4D), virological testing became 

the preferred diagnostic approach at nearly all threshold probabilities.  

These results contrast with those produced using a conventional approach to decision curve analysis,
33,34

 

in which the same net benefit was assigned to all true-positive diagnoses regardless of the speed of 

diagnosis or the infectivity of diagnosed cases. Such an analysis strongly favored NAAT in all settings on 

the basis of its high sensitivity (eAppendix Figure A5), even when Ag-RDT would avert more transmission 

and lead to better clinical and population-level outcomes.  

 

Discussion 

As antigen-detection SARS-CoV-2 rapid diagnostic tests become more widely available, it is important to 

identify the settings under which such tests offer incremental benefit to NAAT or clinical judgment 

alone. Using a novel adaptation of net benefit analysis, we demonstrate that Ag-RDT is likely to 

outperform NAAT under typical outpatient conditions that include >24-hour turnaround times for NAAT, 

even if the Ag-RDT has considerably lower sensitivity. We also demonstrate conditions under which Ag-
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RDT would be favored over NAAT in a hospital setting, including NAAT turnaround-times of 48 hours or 

more, or use of Ag-RDT assays that achieve sensitivity >95% relative to NAAT during acute illness. We 

also demonstrate that both NAAT-based and Ag-RDT-based testing are preferable over clinical 

judgment-based or “treat-all” approaches under reasonable assumptions about the likely intensity of 

response to virologically unconfirmed diagnoses.  

Our novel application of decision curve analysis to COVID-19 demonstrates the importance of 

accounting for factors beyond sensitivity and specificity when evaluating infectious disease diagnostics. 

Although NAAT offers higher sensitivity (and, in symptomatic patients, potentially better specificity) 

than Ag-RDT, the fact that Ag-RDT delivers results more rapidly and identifies the most highly infectious 

individuals can make it equivalent or superior to NAAT in averting transmission. Incorporating all of 

these considerations into a single metric of net benefit, our analysis suggests that Ag-RDT is likely to 

produce better outcomes than NAAT in many outpatient settings with >24 hour NAAT turnaround time 

(whereas NAAT is likely to be preferred in most inpatient facilities with NAAT capacity that can achieve 

<48-hour turnaround). Conventional decision curve analysis – based only on sensitivity, specificity, 

prevalence, and threshold probability – would incorrectly favor the more accurate test (i.e., NAAT) in all 

settings, even when the timing of diagnosis is critical.  

Although any model-based findings are subject to bias, our estimates are likely to be conservative 

regarding the benefit of adopting Ag-RDT in clinical settings. First, our analysis does not incorporate the 

lower economic cost of Ag-RDTs relative to NAAT – though these costs may be partially offset by 

additional follow-up tests for SARS-CoV-2 or alternative diagnoses that may be required after false-

negative Ag-RDT results. Second, our primary estimates of Ag-RDT sensitivity in the acute phase (i.e., 

85% relative to NAAT) may be conservative.
19

 Third, our model does not account for the potential that 

patients who test falsely negative by Ag-RDT may still receive some degree of isolation or clinical 

intervention on the basis of high clinical suspicion.  

Our model is limited by underlying data availability about SARS-CoV-2 dynamics. In particular, data on 

the relationship between viral burden and infectivity remain sparse. Our ability to draw conclusions that 

apply across settings and assays is also limited by varying clinical and public health practice – for 

instance, the extent to which symptomatic people self-isolate or contact tracing is performed are likely 

to vary widely across settings. Estimates of threshold probability are also context specific, depending, for 

example, on the individual and societal economic costs of interventions such as contact investigation 

and quarantine in each particular setting. Third, certain parameter estimates – such as the importance 
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of preventing downstream transmission relative to preventing poor clinical outcomes in people 

currently infected – depend on the future course of the epidemic more broadly. Preventing transmission 

may be more important in settings with emerging or widespread transmission and less important in 

settings with resolving epidemics or imminent widespread vaccination. Finally, our analysis focuses on 

diagnosis of symptomatic individuals and quarantine of their direct contacts, and does not consider the 

potential role of Ag-RDT in preventing pre-symptomatic or asymptomatic transmission.  

In conclusion, this novel application of decision curve analysis demonstrates that for individuals with 

symptoms suggestive of COVID-19, an Ag-RDT with 85% sensitivity (measured relative to NAAT and 

during acute symptoms) could offer greater net benefit than either NAAT or clinician-driven diagnosis. 

This is true particularly in outpatient settings – where NAAT turnaround times are often long, prevalence 

relatively low, and the benefits of diagnosis dominated by the potential to reduce onward transmission. 

In most inpatient contexts, NAAT is likely to be preferred, particularly for patients with severe illness 

presenting after more than a week of symptoms, for whom NAAT may guide clinical intervention while 

Ag-RDT has a high probability of being falsely negative. Even in hospitalized populations, however, Ag-

RDTs could offer greater overall benefit than NAAT-based testing in when NAAT delays are long or Ag-

RDT sensitivity at symptom onset surpasses 95% that of NAAT. Thus, in most clinical settings where 

NAAT testing cannot be consistently performed within 48 hours, Ag-RDT should be strongly considered 

for diagnosis of patients presenting with COVID-19 symptoms.  
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Figure 3 
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Figure 4 
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Figure Legends 

Figure 1: Key assumptions in simulation of net benefit. Panel A: The timing of transmission events both 

from cases and from their direct contacts, in absence of intervention, follows a non-uniform distribution 

relative to the time of symptom onset in the index case. Shading illustrates that different amounts of 

transmission are preventable after earlier (light shading) versus later (dark shading) diagnosis. Panel B: 

The simulated viral burden in upper respiratory diagnostic specimens at symptom onset is log-normally 

distributed across a simulated population. This may be conceptualized in terms of genome copies on a 

quantitative NAAT (units shown on y axis) or antigen copies (assumed to vary in proportion to genome 

copies during acute illness). Panel C: After an initial period of maximal detection, the simulated 

sensitivity of Ag-RDT declines on a similar timeline as infectivity, and sensitivity of NAAT declines more 

slowly. 

 

Figure 2: Timing of testing and SARS-CoV-2 transmission events under different diagnostic algorithms 

in the outpatient setting. Panel A: Test results over time among 1,000,000 COVID-19 patients. Patients 

present at a median 3 days after symptom onset. Ag-RDT and clinical judgment provide same-day results 

(and thus have curves shifted to the left) relative to NAAT, but NAAT ultimately detects more true-

positive COVID-19 cases than Ag-RDT (80% versus 63%). Clinical judgment may diagnose as many true 

COVID-19 cases as NAAT, but with lower specificity and no preference for the most infectious cases (not 

shown). Panel B: Quantity and timing of transmission with and without intervention. Much of the 

potential effect of testing on transmission is diminished by delayed clinical presentation and incomplete 

implementation of or adherence to isolation and contact quarantine interventions, with the stringency 

of intervention further reduced when diagnosis is non-virological (based on clinical judgment alone).  

 

Figure 3: Net benefit analysis of COVID-19 diagnostic strategies. The ‘threshold probability’ is the post-

test probability of having COVID-19, at which the benefits of intervening are balanced with the risks 

(thus a higher threshold probability corresponds to more stringent conditions for diagnosis, and vice 

versa). For the current analysis, in which the benefit of intervention is time-dependent, the threshold 

probability is defined for intervention at the onset of illness. In all panels, the most favored test at a 

given threshold probability is that maximizing net benefit, i.e. corresponding to the uppermost curve. 

Heavy red and blue curves represent the net benefit achieved by NAAT-driven and Ag-RDT-driven 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 28, 2021. ; https://doi.org/10.1101/2020.12.16.20248357doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.16.20248357


 21

intervention under the primary assumptions in the outpatient (panel A) and hospital (panel B) settings. 

At most threshold probabilities, greater net benefit is achieved with Ag-RDT in the outpatient setting 

(solid blue curve in panel A) and with NAAT in the hospital setting (dashed red curve in panel B). 

Additional curves show the effects of varying turnaround times of NAAT (solid = 1 day, dotted = 2 days, 

dashed = 3 days) and Ag-RDT sensitivity relative to NAAT in acute infection (solid = 85%, dash-dot = 

95%).  

 

Figure 4. Comparison of virologic diagnosis (using NAAT or Ag-RDT) to clinical diagnostic approaches 

(treating all, black, or treating those judged most likely to have COVID-19, green). If clinical diagnoses 

receive the same full intervention as virologically diagnosed cases (dashed green and black lines), then 

treating all patients with suspected COVID-19 could be the preferred approach at low threshold 

probabilities (i.e., at low relative harm of intervening on false positives). If, however, the lower certainty 

of a clinical diagnosis results in a reduced intensity of intervention and 25% lower net benefit compared 

to a virologic diagnosis as in our primary analysis (solid green and black lines), then virologic testing 

provides greater net benefit than non-virologic diagnosis at all or nearly all threshold probabilities.  
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